Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258076

RESUMO

Delhi, the national capital of India, has experienced multiple SARS-CoV-2 outbreaks in 2020 and reached a population seropositivity of over 50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant B.1.617.2 (Delta) replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and partial reduction of immunity elicited by prior infection (median estimates; x1.5-fold, 20% reduction). Seropositivity of an employee and family cohort increased from 42% to 86% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi. One-Sentence SummaryDelhi experienced an overwhelming surge of COVID-19 cases and fatalities peaking in May 2021 as the highly transmissible and immune evasive Delta variant replaced the Alpha variant.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20213793

RESUMO

The coronavirus disease of 2019 (COVID-19) pandemic exposed a limitation of artificial intelligence (AI) based medical image interpretation systems. Early in the pandemic, when need was greatest, the absence of sufficient training data prevented effective deep learning (DL) solutions. Even now, there is a need for Chest-X-ray (CxR) screening tools in low and middle income countries (LMIC), when RT-PCR is delayed, to exclude COVID-19 pneumonia (Cov-Pneum) requiring transfer to higher care. In absence of local LMIC data and poor portability of CxR DL algorithms, a new approach is needed. Axiomatically, it is faster to repurpose existing data than to generate new datasets. Here, we describe CovBaseAI, an explainable tool which uses an ensemble of three DL models and an expert decision system (EDS) for Cov-Pneum diagnosis, trained entirely on datasets from the pre-COVID-19 period. Portability, performance, and explainability of CovBaseAI was primarily validated on two independent datasets. First, 1401 randomly selected CxR from an Indian quarantine-center to assess effectiveness in excluding radiologic Cov-Pneum that may require higher care. Second, a curated dataset with 434 RT-PCR positive cases of varying levels of severity and 471 historical scans containing normal studies and non-COVID pathologies, to assess performance in advanced medical settings. CovBaseAI had accuracy of 87% with negative predictive value of 98% in the quarantine-center data for Cov-Pneum. However, sensitivity varied from 0.66 to 0.90 depending on whether RT-PCR or radiologist opinion was set as ground truth. This tool with explainability feature has better performance than publicly available algorithms trained on COVID-19 data but needs further improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...